
Final Report for

Cooperative Agreement

NASA Ames Research Center

NASA NCC 2-5274

Developing Information Power Grid Based Algorithms and Software
7/1/98 to 11/1/98

$50,000

Principal Investigator

Jack Dongarra

University of Tennessee, Knoxville

Computer Science Department

Technical Officer for the Cooperative Agreement
Subhash Saini

Numerical Aerospace Simulation Systems Branch, T27A-I

Grant Officer

Venoncia Braxton

J

_ t '_ 1999

C A s.7.:

ec, e', _-,.J, f _' f,ie_

This was an exploratory study to enhance our understanding of problems involved in

developing large scale applications in a heterogeneous distributed environment. It is likely that
the large scale applications of the future will be built by coupling specialized computational

modules together. For example, efforts now exist to couple ocean and atmospheric prediction

codes to simulate a more complete climate system. These two applications differ in many
respects. They have different grids, the data is in different unit systems and the algorithms for

integrating in time are different. In addition the code for each application is likely to have been
developed on different architectures and tend to have poor performance when run on an
architecture for which the code was not designed, if it runs at all. Architectural differences may

also induce differences in data representation which effect precision and convergence criteria as
well as data transfer issues. In order to couple such dissimilar Codes some form of translation

must be present. This translation should be able to handle interpolation from one grid to another
as well as construction of the correct data field in the correct units from available data. Even if a

code is to be developed from scratch, a modular approach will likely be followed in that standard

scientific packages will be used to do the more mundane tasks such as linear algebra or Fourier
transform operations. This approach allows the developers to concentrate on their science rather

than becoming experts in linear algebra or signal processing. Problems associated with this
development approach include difficulties associated with data extraction and translation from

one module to another, module performance on different nodal architectures, and others.

In addition to these data and software issues there exists operational issues such as platform

stability and resource management. For example, what should happen if some part of the
computing platform becomes unavailable or if more resources become available somewhere in

the middle of a long run. Checkpointing is typically used by large scale applications to save a
state in case something goes wrong. This is a relatively straight forward issue on a single

processor for a "reasonably" sized problem but becomes problematic in a highly heterogeneous
distributed environment and for problem sizes involving hundreds of gigabytes of data. Some

ability to automatically restart an application that has lost processors or to migrate part of an

applicationto takeadvantageof computationalresourcesthathavebecomeavailableshouldbe
provided.In additiona mechanismfor monitoringandsteeringtheapplicationas it progresses
wouldbeusefulfor applicationsthatrunfor weeksatatime.

Our investigationhadthreecomponents.Thefirst areaof researchinvolvedconstructinga
couplingframeworkfor theenvironment.Onecanthinkof couplingasa mechanismfor doing
computingona distributedsystem.Modulesarecoupledtogetherto providefunctionality,asin
theocean/atmosphereexamplegivenabove.Workin thecouplingframeworkalsoencompassed
couplingto severalindividualcomputingresources,suchasavisualizationandsteeringsystemor
to a linearalgebrasolver.Workon this frameworkinvolvedbuildingsoftwareinfrastructurein
theformof librariesto allowusersto accesstheframeworkviaanAPI in the developer's code.

Mechanisms for checkpointing and restarting applications, as well as process migration and
performance modeling techniques also received attention.

We also examined issues in software and data management. In order to share software and
data developed by different research projects some organized, distributed resource management

functionality must be provided. We pushed forward the construction of a repository interface for
developers. We see the repository as a mechanism for managing data and software developed and

used by the community of computational scientists. The system interfaces with the coupled

framework described above and are being built initially as an extension of the NETLIB and
NetSolve systems. It will be enhanced to address security issues, software compatibility and

computational resource issues.

Finally, in addition to these infrastructure aspects, we initiated research on next generation

algorithms for the advanced computing environments of interest. We considered providing
numerical libraries that are tuned for various architectures. The repository mechanism mentioned

above will make users aware of which alternatives are available for a particular machine and the

coupling framework will provide the mechanism for accessing the appropriate method.

In this initial study we worked to extend and integrate current systems to develop the

new capabilities needed to address the challenges described above. Our research focused

on the following areas:

• Parameterizable libraries -- We worked to design and construct libraries that are

parameterized to allow their performance to be optimized over a range of current and

future memory hierarchies. Identifying this range is being done in conjunction with

system architects. We chose a few well-understood and important library functions,

such as linear algebra, to do this. Target architectures included Clusters of SMPs,

Processor in Memory (PIM) such as IRAM http://iram.cs.berkeley.edu, and some

class of reconfigurable systems, such as BRASS

http://http.cs.berkeley.edu/projects/brass/.

• Annotated libraries -- In collaboration with compiler developers, we focused on

identifying opportunities where critical information from the library developer would

be supplied to the compiler can aid the compilation process. At the library interface

level, this included the memory-hierarchy tuning parameters mentioned above, a

performance model that depends on input parameters (e.g. problem size), and tuning

parameters. Below the library level, the focus included semantic information, such as

dependency information to make LU with pivoting as easy to block as LU without

pivoting, and floating point semantic information, such as information to indicate that

it is acceptable to reorder certain floating point operations or to handle exceptions in a

certain way.

• Sparse linear algebra libraries -- Sparse linear algebra benefits from new direct and

iterative methods, packaged in object libraries that make them easy to use. There has

been a great deal of recent progress in understanding how to exploit memory

hierarchies for efficiency (recent supernodal and multifrontal codes) as well as special

problem structures (domain decomposition, geometric and algebraic multigrid). In

addition to generic libraries, this work was closely tied to particular DOD/DOE

applications (like ASCI) to drive development.

• Metacomputing environment. We explored new methods for packaging, distributing,

and accessing algorithm technology. This effort also investigated use of network
enabled solvers.

In summary, these new libraries speed the transfer of recent algorithmic technology in

linear algebra, hierarchical methods, and other areas to high-performance computer users.

They foster a new division of labor between compiler writers, library writers and perhaps

architects, while at the same time simplifying the problems of all of them. This work

enhanced the capability of controlling large complex heterogeneous and dynamic

applications over a distributed network supports the assembly of multidisciplinary

applications parts of which are built by independent teams.

